Recent QCD results from Tevatron Pavel Demine CEA Saclay, France for the DØ and CDF collaborations International Symposium on Multiparticle Dynamics September 5 — 11, 2003 ### The Tevatron Run II ### Tevatron upgrade (1996-2001): **Energy upgrade:** $1.8 \rightarrow 1.96 \text{ TeV}$ Increased N(bunches): $6 \times 6 \rightarrow 36 \times 36$ mproved p production Main injector, target mproved p production Main injector Run II expectations: Started March 1st, 2001 **Expected luminosity** - \rightarrow > 200 pb⁻¹ (delivered) Oct. 2003 - ightarrow 2 fb⁻¹ by 2005 - \rightarrow > 8 fb⁻¹ by start of LHC ## CDF and DØ status: Run II > Run Pavel Demine ## Dijet cross section from DØ - probe of - QCD - proton structure at large **x** - hunting for resonances - quark compositeness - data sample: - 34.1 pb⁻¹ $\not E_T/P_{Tj1} < 0.7$ - primary vertex: - $IZ_{vtx}I < 50$ cm - $N_{trks} \ge 5$ - selection & sample definition: - cone jets ($R_{cone} = 0.7$) - lη_{jet}l < 0.5 N_{jet} ≥ 2 - jet quality cuts twice the o at 1.96 TeV #### Jet energy scale $$\frac{\mathsf{E}_{\mathsf{particle}}^{\mathsf{jet}} = \frac{\mathsf{E}_{\mathsf{det}}^{\mathsf{jet}} - \mathsf{O}}{\mathsf{R}_{\mathsf{jet}}\mathsf{S}}$$ - Offset (0): - energy not asspciated with hard interaction (U noise, previous events, additional pp interaction) - Response (R_{jet}): - calorimeter response to jet - EM part calibrated on Z → ee mass peak - measured from E_T balance in γ+jet events - Showering (S): - losses due to showering out of jet cone ### Observed cross section #### calculated by $$\left\langle \frac{d\sigma}{dM_{JJ}} \right\rangle = \frac{N_{event}}{L \cdot \Delta M_{JJ}} \times \frac{C_{unsmear}}{\varepsilon_{eff}}$$ - cut efficiencies - estimated from data - jet quality: ~97% - cross section - with total error - luminosity error - additional 10% - fully correlated bin-to-bin and not shown - CTEQ6M pdf compare to NLO theory $R_{sep} = 1.3$ 200 400 600 800 1000 1200 1400 M_{JJ} [GeV] ### Comparison to theory - agrees within uncertainties - error on luminosity not shown (10%) - main uncert.: jet energy scale, P_T resolution, jet quality dominated by jet energy scale error - 150 to 160 GeV: - +52% - 800 to 1400 GeV: - 38% - +190% 73% ## Dijet cross section from CDF - larger Run II data sample: - 106 pb⁻¹ - for 75 pb⁻¹ sample resonances in 2-jets mass preliminary Run II limits for - already reaching comparable or higher limits than in Run σ.B (pb) 10-1 6 10^{2} Search for New Particles Decaying to Dijets $|\eta_{\rm MET}| < 2.0$, $|\cos \vartheta^*| < 2/3$ 300<M<410 GeV Excl 95% CL Upper Limit CDF Run 2 Preliminary (75 pb⁻¹) 260<M<640 GeV Excluded Excited Quark 200<M<760 GeV Excluded Axigluon or Coloron 200<M<1130 GeV Excluded 300 400 500 600 800 900 New Particle Mass (GeV/c²) Pavel Demine CEA Saclay ## Inclusive jet cross section from DØ #### data sample: - 34.1 pb⁻¹ - $E_{\rm T}/P_{\rm Tj1} < 0.7$ - primary vertex: - $IZ_{vtx}I < 50$ cm - $-N_{trks} > 4$ ### selection & sample definition: - cone jets $(R_{cone} = 0.7)$ - | η_{jet}| < 0.5 - $60 < P_{Tjet} < 560 GeV$ #### calculated by $$\left\langle rac{d\sigma}{dp_t} ight angle = rac{N_{event}}{L \cdot \Delta p_T} imes rac{C_{unsmear}}{arepsilon_{eff}}$$ - ϵ_{eff} estimated from data - theory: CTEQ6M pdf - data points: only stat. errors ### Comparison to theory - agrees within uncertainties - error on luminosity not shown (10%) - main uncert.: jet energy scale, P_T resolution, jet quality - dominated by jet energy scale error - \sim 9% for central jets, P_T < 200 GeV - reduced statistics, extrapolation to higher P_T # nclusive jet cross section from CDF - larger data sample: - 177 pb⁻¹ - selection & sample definition: - cone jets ($R_{cone} = 0.7$) 0.1 < $l\eta_{jet} l < 0.7$ - overal energy scale normalized to Run (with $5 \pm 3\%$ correction factor) - reapply p_T-dependent systematics from - Preliminary cross section measurements for $|\eta_{ m iet}| < 2.8$ $0.1 < l\eta_{Det} l < 0.7$ JetClu Cone R = 0.7 Integrated L = 177 pb **ISMD 2003** Pavel Demine CEA Saclay ### k_T and cone jets at DØ - compare E_T of cone and matched k_T jets: - chose cone jet - find correponding kT jet (matching req. △R < 0.1) - compare inclusive jet cross sections - data sample: - 88 pb⁻¹ (Run I data) - $\sqrt{s} = 1.8 \text{ TeV}$ - D = 1.0: - within 1% same NLO cross section as \(\subseteq 0.8 \) cone with R_{cone} = 0.7 - up to 4-7 GeV higher p_T in k_T jets - main uncertainties: - jet energy scale - luminosity - reasonable agreement, marginal at low p₁ - data corrected to particle level buttheory is NLO at parton level ### k_⊤ and cone jets at CDF - compare E_T of cone and matched k_T jets: - ΔE_T (cone kT) vs E_T (cone) - data sample: - 82 pb⁻¹ - $\Sigma E_T < 1.96 \text{ TeV}$ - primary vtx: IZ_{vtx}I < 60 cm - D = 0.7: - small differences to cone jet $$(R_{cone} = 0.7).$$ - D = 1.0: - up to 4-5 GeV higher E_T in k_T jets # k_T and cone jets: inclusive jet cross sect. - Large difference between D = 0.7 and D = 1.0 - Different shape at low E_T - Long term goal - measure jet cross section using the Run II jet algorithms - derive jet energy correction - stufy jet fragmentation - study energy contributions from underlying event - : #### Conclusion - spectra: preliminary results on the central inclusive jet p_T and dijet mass - Run II dataset larger than Run I - measured cross sections agree with predictions from NLO QCD over 7 orders of magnitude - dominant systematic uncertainty: calorimeter jet energy scale - prospects for Run II: - extend the measurements to the forward region - ightarrow sensitivity to high ${\sf x}$ gluon - higher statisicts, reduced systematics - α_s mesuruments